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Correlation between Poisson’s ratio and porosity in porous materials
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In the case of homogeneous isotropic materials
Poisson’s ratio ν can be determined using modulus of
elasticity E and shear modulus G as follows

ν = E

2G
− 1· (1)

In the recent works [1, 2] the percolation model
was found to describe fairly well the Young’s and
shear modulus porosity dependence for porous mate-
rials. For that reason, Poisson’s ratio porosity depen-
dence can be simply modeled via Equation 1 and
percolation theory, which is the main aim of this
work.

The percolation equations for Young’s and shear mod-
ulus porosity dependence are

E = E0

(
pc − p

pc

) fE

for p ≤ pc, (2)

G = G0

(
pc − p

pc

) fG

for p ≤ pc, (3)

where E is the effective Young’s modulus and G is the
effective shear modulus of porous material with poros-
ity p, E0 is Young’s modulus and G0 is shear mod-
ulus of solid material, pc is a percolation threshold,
i.e., the porosity at which the effective Young’s and
shear modulus become zero, and fE is the character-
istic exponent for the Young’s modulus and fG is the
characteristic exponent for the shear modulus of porous
material.

It must be pointed out that the percolation threshold for
both Young’s and shear modulus is considered identical on
the basis of previous experimental results [1, 2]. However,
the reader is requested to keep in mind that exceptions
can exist. In that case you ought to consider different
percolation thresholds for Young’s modulus and for shear
modulus.

After substituting Equations 2 and 3 in Equation 1 we
obtain

ν = E0

2G0

(
pc − p

pc

) fE− fG

− 1 for p ≤ pc. (4)

Since E0/2G0 determines Poisson’s ratio of solid material
we can simplify the equation as follows

ννν = (ννν0 + 1)

(
pc − p

pc

) fννν

− 1 for p ≤ pc, (5)

where fν = fE−fG is the characteristic exponent for Pois-
son’s ratio. fν �= 0, because our previous works [1, 2]
showed that the characteristic exponent for Young’s and
shear modulus porosity dependence are usually not iden-
tical. Equation 5 represents new percolation model for the
Poisson’s ratio porosity dependence of isotropic and ho-
mogeneous porous solids. It implies also that the power
law scaling with porosity undergoes the quantity ν + 1
and not simply ν.

Usually, Poisson’s ratio for porous materials is calcu-
lated according to Equation 1 from the Young’s and shear
modulus experimental data. Therefore, the same approach
was used for the experimental data investigated in our
previous works [1, 2]. Then, the Poisson’s ratio data were
fitted to Equation 5 with Poisson’s ratio of solid material
and characteristic exponent as fitting parameters. To sim-
plify the fitting procedure the percolation threshold value
was averaged from the values obtained for Young’s and
shear modulus data.

Again and again it is necessary to repeat the require-
ments that must be fulfilled prior to fitting: To model
porosity dependence of Poisson’s ratio, one need as wide
as possible porosity range for the investigated material
prepared by the same preparation method from the same
type of the powder. Further, if high porosity data with
no low porosity experimental data are available it is nec-
essary to incorporate the property of the solid material
into the fitting process, when known. In contrast, when
no high porosity experimental data are available, it is
necessary to estimate the value of percolation thresh-
old: It seems to be preferably the apparent porosity of
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T AB L E I Fitting results for Poisson’s ratio porosity dependence for sintered iron [3]

Porosity range (–) ν0 (–) ν0
∗(–) fν (–) fE−fG (–) pc (–) χ2 (–)

0−0.22 0.295 ± 0.002 0.303 0.0855 ± 0.0066 0.09 ≡0.41 3.3 E-4

For comparison are given also calculated values of Poisson’s ratio of solid material ν0
∗ and characteristic exponent fE–fG calculated from Refs. [1, 2] (χ2 is

a minimization function).

Figure 1 Poisson’s ratio porosity dependence for sintered iron [3].

the powder [2]. Only when these requirements are ful-
filled one can obtain the meaningful value of the char-
acteristic exponent and/or percolation threshold. Oth-
erwise, the obtained values are merely the best fitting
parameters valid only within the investigated porosity
range.

The fitting results for sintered iron [3] (see
Table I and Fig. 1) confirmed the validity of the pro-
posed model: The porosity dependence of Poisson’s ratio
of sintered iron is evidently nonlinear and well described
by Equation 5. There, the percolation threshold was set
to 0.41 according to the results for Young’s modulus in a
wider porosity range [1]. Also, calculated values of Pois-
son’s ratio of solid material ν0

∗ and characteristic expo-
nent fE−fG from Refs. [1, 2] are in good agreement with
the fitting results.

In the case of porous ZnO [4] the results indicate that
the Poisson’s ratio is probably independent of porosity
(see Table II and Fig. 2) as points out fν→0. Thus, the
proposed model enables to explain why some porous ma-
terials have almost constant Poisson’s ratio regardless of
the porosity level. Further, it implies that in the case of
identical characteristic exponents for Young’s and shear
modulus (fν = 0) Poisson’s ratio of porous material must
be equal to the Poisson’s ratio of the solid material inside
the whole porosity range.

Figure 2 Poisson’s ratio porosity dependence for porous ZnO [4].

Very often the available experimental data are from
low porosity range relatively far away from the percola-
tion threshold. This problem can be overcome using the
apparent porosity as the percolation threshold. When it is
unknown, tap porosity can be used to investigate the ef-
fect of percolation threshold on the value of characteristic
exponent for Poisson’s ratio. This is the case of sintered
alpha-two titanium aluminide [5] (see Fig. 3). From Table
III it can be seen that using of tap porosity pc ≡ 0.37 di-
minishes significantly the difference between fitting result
and calculated value of fE = fG from Refs. [1, 2].

It is generally accepted [1, 6, 7] that the value
of percolation threshold is a function of the powder
size, shape, size and shape distributions, and prepara-
tion method. Thanks to less frequently found experi-
mental shear modulus data in the literature only pow-
der size effect for sintered Th2O [8] is investigated in
this work: The characteristic exponent for Poisson’s ra-
tio decreases to zero with increasing powder size of the
Th2O powder (see Table IV). However, almost poros-
ity independent Poisson’s ratio for the powder size
4–44 µm was observed because the porosity range for
this powder is significantly smaller than for finer ones.

Thanks to the preparation method finer powder (0–2
µm) possesses also the negative value of the Poisson’s ra-
tio (see Fig. 4). Surprisingly, this negative value is omitted

T AB L E I I Fitting results for Poisson’s ratio porosity dependence for sintered ZnO [4]

Porosity range (–) ν0 (–) ν0
∗ (–) fν (–) fE−fG (–) pc (–) χ2 (–)

0−0.33 0.344 ± 0.015 0.342 0.0087 ± 0.0239 0.01 ≡0.51 1.1E-3
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T AB L E I I I Influence of fixed percolation threshold on the characteristic exponent for Poisson’s ratio of sintered alpha-two titanium aluminide [5]:
pc=0.37 is tap porosity

Porosity range (–) ν0 (–) ν0
∗ (–) fν (–) fE−fG (–) pc (–) χ2 (–)

0−0.30 0.343 ± 0.017 0.36 0.1044 ± 0.0220 0.27 ≡0.44 6.0E−4
0−0.30 0.337 ± 0.019 0.36 0.0697 ± 0.0180 0.10 ≡0.37 8.4E−4

T AB L E I V Fitting results for powder size influence on the Poisson’s ratio porosity dependence for porous Th2O [8]

Th2O powder size
(µm)

Porosity range
(–) ν0 (–) ν0

∗ (–) fν (–) fE−fG (–) pc (–) χ2 (–)

0−2 0−0.33 0.347 ± 0.021 0.32 0.2776 ± 0.0227 0.140 ≡0.375 1.3E-3
2−4 0−0.39 0.330 ± 0.013 0.32 0.1634 ± 0.0148 0.060 ≡0.53 4.0E-4
4−44 0−0.27 0.314 ± 0.005 0.32 0.0854 ± 0.0056 0.130 ≡0.455 3.0E-4

Figure 3 Log-log plot of Poisson’s ratio vs. 1−p/pc for sintered alpha-two
titanium aluminide [5] (pc ≡ 0.37 is tap porosity).

Figure 4 Influence of powder size on Poisson’s ratio porosity dependence
for porous Th2O [8]: (◦) 0–2 µm; (•) 2–4 µm; (�) 4–44 µm.

in the original work of Spinner et al. [8] in Poisson’s ratio
porosity dependence plot. We were able to detect this point
thanks to the corresponding points at plots of Young’s and
shear modulus versus porosity. How to explain this? Ac-
cording to the Cauchy–Hooke law for isotropic materials

and as a consequence of the second law of thermody-
namics the following inequality must hold for isotropic
materials −1 < ν < 0.5. Nevertheless, in some older lit-
erature the opinion has prevailed that the Poisson ratio
should always be positive for isotropic materials (i.e., 0
< ν < .5).

Summarizing, the model proposed on the basis of the
percolation models for Young’s and shear modulus was
found to describe fairly well the Poisson’s ratio porosity
dependence of porous materials. For the first time there
is a model that is able to explain why for some porous
materials porosity independent Poisson’s ratio can be ob-
served. Moreover, it is applicable also for negative values
of the Poisson’s ratio in the vicinity of the percolation
threshold. Further, it was showed that power law scaling
with porosity undergoes the quantity ν + 1 and not simply
Poisson’s ratio.

It must be noted that all work was done under the as-
sumption that the observed porous material is homoge-
neous and isotropic. When more complex stress and stiff-
ness tensors ought to be taken into account the proposed
model is either unusable or will have only limited validity.
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